Burn-in & Test Socket Workshop

March 2 - 5, 2003
Hilton Phoenix East / Mesa Hotel
Mesa, Arizona

Sponsored By The IEEE Computer Society
Test Technology Technical Council
COPYRIGHT NOTICE

- The papers in this publication comprise the proceedings of the 2003 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.
- There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
Session 2
Monday 3/03/03 10:30AM

Burn-in Tools And Test Equipment

“DUT Host: DUT-Level Burn-In System Diagnostic Tool”
Trent W. Johnson - Advanced Micro Devices

“Total Automation Of Burn-In Process Flow”
S. Kumaran - Trio-Tech International

“Qualification Of Test And Burn-In Sockets Using A Desk Top Test System”
Jeff Cymerys - Advanced Micro Devices
Ken Hallmen - Checksum, Inc.
Rafiq Hussain - Advanced Micro Devices
Agenda

• The Hybrid Burn-In Platform
• Introduction to DUT-Host
• DUT-host Software structure
• Sample Screen Shots
• Summary of Lessons Learned
Hybrid Burn-In Overview

What Is “Hybrid Burn-in”?

- New generation of burn-in technology at AMD that has evolved due to the unique requirements of the Athlon and Duron microprocessor product lines
 - More electrical features than “traditional” burn-in (minus ovens)
 - Individual DUT temperature, voltage, and frequency control
 - Able to execute X86 code and BIST code individually
 - Failed units can be shutdown individually to prevent damage
 - Real time individual data collection and communication to host

- “HBI” is actually a multiple position, independently programmed, low pin-count, tester that is able to economically run long test times (burn-in durations) at unique burn-in conditions

[Mark Miller - BiTS 2001]
Hybrid Burn-In Block Diagram

- 10 DUT positions controlled by one local microcontroller
- 18 Trays linked to the “Cell-host” via Ethernet
- Multiple Cell-hosts linked to the “Site-host” computer
- Production data accessed remotely from Site-Host
What is DUT-Host?

• DUT-Host is a tool developed by AMD to allow manual control over AMD’s Hybrid Burn-In system.

• DUT-Host provides a unique test environment for a single DUT in Hybrid Burn-In.

• DUT-Host is simple enough to use that an expert is not required to operate it.

• One Cell-host computer controls several DUTs.
The old way of debugging

Tedious C++ code

- Recompilation at every change
- No real-time feedback
- Must be an “expert” to make sense of it all
- The person who knows it ends up doing it for everybody
• Software may be added to Hybrid Burn-In as a plug-in

• DUT control via special C++ functions
Logic flow (function calling)

- Control System is in charge

- Windows© GUI takes all orders from the Control System thread

- DUT control efficiency is maintained in exchange for making the user wait a few more milli-seconds.
Shmoo requirement

• VLSI testers have a great tool called “Shmoo” that plots pass/fail status over voltage and frequency.

• A common option on Shmoo is to show a legend of the failing tests.

• Shmoo plots often show up speckled near failing boundaries. A manual re-test feature is necessary.

• What is a “Shmoo” anyway???
Shmoo Condition Selection

This is Shmoo
Voltage vs. Frequency Shmoo

- Fewer fail modes makes the output simple
- Double-click for re-test
- Failing boundaries are automatically tested twice.
Temperature as a shmoo axis

- Plot is NOT available with conventional VLSI testers
- Can seek out temperature dependent problems.
3-Dimensional failure plot

- We have control over Temperature, Voltage, and Frequency of the DUT
- Need a way of combining all 3 axes into a chart while retaining readability
- Solution: Use more color and data labels
3-Dimensional F-Max Shmoo

Temperature

Position: 0.0

Voltage
More Ways of Displaying Data

• For many custom experiments, Shmoo is not adequate

• Need a way to convert ALL HBI features into tunable knobs

• Need to see and log every possible traceable result

• Need to operate any or all DUTs at the same time

• Need it all in one dialog
Control Console

Inputs

Outputs
DUT-Host vs. VLSI Tester

DUT-Host on HBI

- Hundreds of dollars per position
- Basic JTAG Interface
- Simple to use
- Temperature control integrated
- Basic set of debug tools
- Inexpensive Signal drivers cannot operate very fast
- Slow test time

VLSI Tester

- Millions of dollars per position
- Hundreds of data channels
- High skill level required to use
- Temperature control is external
- Extensive set of debug tools
- Signal drivers can run at high speeds
- Fast test time
Lessons Learned

• **DUT-Host** has proved to be a useful tool for the following:
 – First Silicon check-out
 – Silicon Debug
 – Hardware diagnostics
 – Hardware development tool
 – Thermal cycling experiments

• **DUT-Host** still requires extra “hacking” to support device-specific test parameters.

• No matter how hard we try, we still need VLSI testers
Conclusion

• DUT-Host allows the potential of Hybrid Burn-in to be realized.

• No special training required to use DUT-Host.

• DUT-Host is a cost-effective alternative to a VLSI Tester for basic testing tasks.

• Burn-in Software Development is becoming an important task as we move to more complex burn-in systems.

• Testability: You get what you pay for.
Acknowledgements

Special thanks to Mark Miller for the use of presentation slides to describe Hybrid Burn-in in this presentation.

Hybrid Burn-In is the successful result of the combined efforts from numerous engineers at AMD.
2003 Burn-In & Test Socket Workshop

Total Automation of Burn-In Process Flow

S Kumaran (Engineering Manager)
Outline

✓ Objective
✓ System Overview
✓ Advantages
✓ Specifications
5) Automated Burn-In Process Flow
✓ Electrical Test Module (Bench Check Station)
✓ Lot Summary Report / database
✓ Upgrading, Cost & Quality Comparison
✓ Summary
✓ Video
1) Objective

To Innovate the automation of all Burn-In Processes, to raise yield and increase productivity. Following were automated to achieve the objective:-

- Dry cleaning of BIB
- Loading of empty Burn-In-Board (BIB) from trolley
- Loading devices into BIB
- 100% Bench Test of loaded BIB
- Transfer of BIB onto Oven trolley
- Loading of BIB into Oven for Burn-In
- Unloading BIB from oven and unloading devices
2) System Overview

- Burn-In Board Dry Cleaner
 The Module was developed to clean Burn-In Board in Trolley
b) Loader/Unloader module was developed to:

- Automatically load devices onto BIB
- Perform 100% device Testing at Board Check
- Loading BIB back onto Oven trolley
2) System Overview (Cont’)

c) Auto-BIB sloter into oven chamber & oven Trolley

This module was developed to automate loading and unloading of BIB in oven. Trolley lock onto oven for automatic loading and unloading of Burn-In Board from Oven.
3) Advantages

- Reduces the operating cost
- Increases device yield
- Minimise human error (eg. Bent leads)
- Maintaining lead integrity
- Perform precise and high-speed transfer of IC packages
- Dry cleaning minimises dust particle on device
- Pleasant working environment
Advantages (Cont’)

- User friendly buttons on both PC and machine
- Technicians easily trained to operate machine
- Software can be accessed/viewed/controlled from a remote PC
- Easy maintenance, with manual in help menu
4) Specifications

- Handles Package Type: All open top packages including PGA, BGA, QFP, TQFP, TSOP, SOP, SSOP & PLCC
- Resistance Check (0 ohms to 20 Mohm)
- Electrical Check: Signal Integrity Test (Max. 64 signal simultaneously)
- Results stored in database
- Automatic print-out of test result
- Throughput, 2200 UPH for 144pin QFP device, 2 head
5) Automated Burn-In Process Flow

- Empty BIB Dry Clean Machine
- Empty BIB is loaded into PnP Machine
- Loaded BIB is transported to 100% Board Check Station (BCS) module
- Device loading from tray to BIB
Automated Burn-In Process Flow (Cont’)

Position for 100% Electrical Board Check, with test pins automatically Brought down to BIB.

Trolley with BIB sloted automatically to Oven Chamber

Automatic 100% Bench Check Result display.

After signal test, loaded BIB will be transported back to the oven rack trolley
6) Electrical Test Module Flow

- Burn-In Specification set-up
- BIB to Bench Check Station (BCS)
- Resistance check
- Voltage and Signal Sequence-up
- Voltage/Current check
- Signal frequency/Vol/Voh check
- DUT output signal check
- Print test result
- BIBs stored in Pass/Fail section of trolley
100% Bench Check Station
Electrical Test Screen
7) Lot Summary Report/database

After testing of all BIBs from trolley:

- Test results (Lot Summary) stored in database
- Automatic print-out of test results at End of Testing the full Trolley
- It is sorted out
 - by the date and time of Automatic Bench Test
 - by the lot number
- Test results can be retrieved anytime from database
7) Lot Summary Report (Cont’)

Example
PnP5 : LOT Summary
Lot id : TTS173856-1
Operator id : 5898

Time : 13-03-02 --- 11:28:01
BIB tested : 48
BIB failed : 2
% passed : 96

[BIB location] : Socket number with failed Device___, <BIB Voltage>

[64] : 23___, 26___, <7.01V>
[63] : 0___, <0.03V>

End

Check by : ________________

Slot #

Vcc Voltage

0 indicate short or open cct bd
8) Upgrading, Cost & Quality Comparison

- IC Loaders upgradeable to include automated BIB 100% Bench check tester
- Oven upgradeable to include automated BIB loader/unloader
- Option to have BIB Cleaner incorporated
- IC loader/unloader, BCS, Stacker: USD 240,000
- Auto BIB oven loader/unloader: USD 35,000
- Automatic BIB Dry Cleaner: USD 80,000
- Return on Investment: 1.7 years
8) Upgrading Cost & Quality Comparison

8b) Comparison Table

<table>
<thead>
<tr>
<th>Manual Burn-In Process</th>
<th>Automated B/I Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent leads due to human handling (80 ppm)</td>
<td>Minimize bent lead (20 ppm)</td>
</tr>
<tr>
<td>Handling Unit cost:- $0.0267</td>
<td>Handling Unit Cost:-$0.009</td>
</tr>
<tr>
<td>Throughput for 144ldQFP 510 device/per man hour</td>
<td>Throughput for 144ldQFP 2200 UPH</td>
</tr>
<tr>
<td>4 operators to achieve 2200 UPH</td>
<td>0.5 operator to achieve 2200 UPH.</td>
</tr>
</tbody>
</table>
8) Upgrading Cost & Quality Comparison

8c) Dry cleaner’s yield before and after cleaning of BIB

<table>
<thead>
<tr>
<th>BD S/N</th>
<th>Particle Before Cleaning (>100um)</th>
<th>Yield Before Cleaning</th>
<th>Particle After Cleaning (>100um)</th>
<th>Yield After Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>3</td>
<td>91.40%</td>
<td>1</td>
<td>94.80%</td>
</tr>
<tr>
<td>161</td>
<td>2</td>
<td>92.50%</td>
<td>0</td>
<td>95.30%</td>
</tr>
<tr>
<td>784</td>
<td>1</td>
<td>96.40%</td>
<td>0</td>
<td>96.90%</td>
</tr>
<tr>
<td>041</td>
<td>2</td>
<td>95.30%</td>
<td>0</td>
<td>97.40%</td>
</tr>
<tr>
<td>001</td>
<td>2</td>
<td>96.90%</td>
<td>0</td>
<td>99.00%</td>
</tr>
<tr>
<td>082</td>
<td>4</td>
<td>95.10%</td>
<td>0</td>
<td>98.40%</td>
</tr>
<tr>
<td>806</td>
<td>3</td>
<td>95.40%</td>
<td>1</td>
<td>96.30%</td>
</tr>
<tr>
<td>738</td>
<td>2</td>
<td>95.10%</td>
<td>0</td>
<td>95.70%</td>
</tr>
<tr>
<td>648</td>
<td>2</td>
<td>94.40%</td>
<td>0</td>
<td>95.60%</td>
</tr>
<tr>
<td>038</td>
<td>4</td>
<td>93.40%</td>
<td>1</td>
<td>95.30%</td>
</tr>
</tbody>
</table>

B/I Yield improved to 96.5% from 94.5%
9) Summary

In conclusion, with our 100% automation of Burn-In Process flow:

- Improve throughput by 4 times
- Cost Reduction
- Better quality output (Minimize bent leads)
- Minimise device damage, reduce attrition rate
- Better yield with lesser manpower
- Automate electrical test, results recording & printing
- Improve working environment
10) VIDEO

Dry Cleaner

PnP/ Tester

Auto-BIB Sloter
Into Oven Chamber
Qualification of Test and Burn-In Sockets Using a Desk Top Test System

2003 Burn-In and Test Socket Workshop
March 2 – 5, 2003

Ken Hallmen

BiTS

Jean Cymerys
Rafiq Hussain

CHECKSUM

AMD
Objective

- To qualify Open & Short performance of IC devices, test & burn-in Sockets

Plan of Record

- Test all contacts individually
- Socket lifetime
- Actuation force
- Contact resistance
- Real time testing
- User friendly desk top system
Agenda

• Why is real time testing important?
• Test System
 – Contact resistance testing
 – Digital IC package tests for opens & shorts
• Qualification of Test and Burn-In Sockets
• Post Assembly O/S testing of IC devices
• Conclusions
Real Time Testing

- Validation is done in a lab environment
 - Real time evaluation
 - System time is not an issue
- Sockets can be modified and tested immediately
- Bench Top System can be used in place of production tester
Opens/Shorts Test System

- Off-the-shelf plus customized load boards
- Expandable up to 8,000 channels
- Modular PC-based cards
- Requires very little space
- Stand-alone and/or integrated with a handler
- Simple programs with auto-learn
- Automated and manual program generation
- Specific failure diagnostics
Electrical Capability

- **Resistance**
 - 0Ω to $19\text{M}\Omega$ (minimum to maximum)
 - Constant voltage
 - Constant current
 - Current ranges from $0.1\mu\text{A}$ to 10mA using 200mV or 2V compliance

- **Capacitance**
 - 1pF to $20,000\mu\text{F}$ (minimum to maximum)
 - 100 Hz to 100 KHz

- **Voltage measurement** for load board analysis
Contact Resistance Load Board

- Designed to isolate contact resistance
- Uses standard 4-wire Kelvin connections
- Measurement system zero offset compensation
- Milli-ohm resolution
- Milli-second measurements
4-Wire Kelvin Measurement

- Removes lead and trace resistance
- Requires proper physical layout for all traces
- Separate traces for current source
- Separate traces for voltage measurement
4-Wire Kelvin Connections

- 4-Wires connected to 4 separate test points
- Separate traces up to the socket
- Shorted IC test package
- Necessary for accurate, low-ohm measurements
- Up to 4,000 contacts using 4-wire connections
Digital IC Package Testing Load Board

- Contact resistance load board can be used
- Single connection to each lead is sufficient
- Verifies connectivity of I/O protection diodes
- Verifies common busses; e.g., VCC, VLDT, GND
- Milli-volt and milli-ohm resolution
- Milli-second measurements
IC Packaging Tests

- Tests connections from the BGA to die
- All common busses are checked for opens and shorts
- I/O protection diodes to busses verify I/O connections
Identification Recommendations

• Provide unique names for the test system I/O pins to identify failures quickly & accurately
 – Socket connection names, e.g. Pin 1, AE29
 – IC pin and signal names, e.g. Pin 1, AE29 MEMDATA[32]

• Socket connections names can be used for contact resistance tests
• IC pins and signal names can be used for IC packaging tests
Load Board Design Considerations

- Test system connections to the load board
 - Via cables to load board connectors
 - Via standardized interface from the tester to each load board

- Load board changeover efforts vary

- Can be configured with vacuum interface
Test System with Load Board
Standardized Load Board Interface

Load board on vacuum test head
Socket Qualification

[Images of socket qualification components]
Socket Continuity

- Test each pin individually
 - Bus pins (VDD, VSS) tested for low resistance
 - I/O pins tested for connectivity (verify diode junction)
- Real time system response

“*” signifies out of range failures

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Type</th>
<th>Title</th>
<th>Low Limit</th>
<th>Upper Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>Res</td>
<td>VDD Pin</td>
<td>0</td>
<td>5</td>
<td>3.25</td>
</tr>
<tr>
<td>R10</td>
<td>R7</td>
<td>Res</td>
<td>VDD Pin</td>
<td>0</td>
<td>5</td>
<td>5.2559 *</td>
</tr>
<tr>
<td>R10</td>
<td>Y14</td>
<td>Res</td>
<td>VDD Pin</td>
<td>0</td>
<td>5</td>
<td>O_Rng *</td>
</tr>
<tr>
<td>R10</td>
<td>N6</td>
<td>Res</td>
<td>VSS Pin</td>
<td>0</td>
<td>5</td>
<td>4.6959</td>
</tr>
<tr>
<td>R10</td>
<td>M26</td>
<td>Res</td>
<td>VSS Pin</td>
<td>0</td>
<td>5</td>
<td>5.3613 *</td>
</tr>
<tr>
<td>R10</td>
<td>J26</td>
<td>Res</td>
<td>VSS Pin</td>
<td>0</td>
<td>5</td>
<td>O_Rng *</td>
</tr>
<tr>
<td>Signal Pin</td>
<td>E12</td>
<td>Res</td>
<td>MEM CLK</td>
<td>100</td>
<td>733</td>
<td>505.64</td>
</tr>
<tr>
<td>Signal Pin</td>
<td>AG12</td>
<td>Res</td>
<td>MEMVREF</td>
<td>100</td>
<td>733</td>
<td>826.12 *</td>
</tr>
<tr>
<td>Signal Pin</td>
<td>H25</td>
<td>Res</td>
<td>LO CAD OUT</td>
<td>100</td>
<td>733</td>
<td>O_Rng *</td>
</tr>
</tbody>
</table>
Pogo Pin Actuation Force

- **Goal:** To determine the ideal contact force
 - Force on package
 - Force on die

- **Test Contactor or SLT (system-level test)**
- **Pneumatic actuator**
- **Force Measurement Unit**
 - Load transducer

- **Force vs. contact resistance**
Force Measurement Unit

- Pneumatic Actuator
- Device
- Socket
- Load Transducer
- Force applied (lbs)
Force vs. Continuity (SLT)

<table>
<thead>
<tr>
<th>Force (lbs)</th>
<th>Force (g/pin)</th>
<th>ERRORS</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>12.69</td>
<td>6</td>
<td>FAIL</td>
</tr>
<tr>
<td>22.2</td>
<td>13.36</td>
<td>18</td>
<td>FAIL</td>
</tr>
<tr>
<td>24.3</td>
<td>14.62</td>
<td>2</td>
<td>FAIL</td>
</tr>
<tr>
<td>26.4</td>
<td>15.88</td>
<td>1</td>
<td>PASS</td>
</tr>
<tr>
<td>26.5</td>
<td>15.94</td>
<td>0</td>
<td>PASS</td>
</tr>
<tr>
<td>27.4</td>
<td>16.48</td>
<td>0</td>
<td>PASS</td>
</tr>
<tr>
<td>28.5</td>
<td>17.15</td>
<td>0</td>
<td>PASS</td>
</tr>
<tr>
<td>28.7</td>
<td>17.27</td>
<td>0</td>
<td>PASS</td>
</tr>
<tr>
<td>29.5</td>
<td>17.75</td>
<td>0</td>
<td>PASS</td>
</tr>
</tbody>
</table>

- Identify the actuation force needed for all pins to make contact
- Goal: to achieve the lowest possible force!
- Consistency

Zero Failures!!
Pogo Pin Socket Lifetime (SLT)

- Insertion program
- Measurements at 25 k intervals
 - Goal is ~100 k insertions for SLT socket lifetime
 - 1 million insertions for test contactor

- Compare changes in contact resistance due to mechanical and thermal cycles
- Achieve mechanical lifetime of socket
 - Simulate production environment

- High frequency test – done separately
Mechanical Lifetime of socket

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Insertions</th>
<th>R_{ave} (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor A</td>
<td>Low</td>
<td>23.11</td>
</tr>
<tr>
<td></td>
<td>25 k</td>
<td>23.27</td>
</tr>
<tr>
<td></td>
<td>50 k</td>
<td>22.93</td>
</tr>
<tr>
<td></td>
<td>75 k</td>
<td>22.68</td>
</tr>
<tr>
<td>Vendor B</td>
<td>Low</td>
<td>22.82</td>
</tr>
<tr>
<td></td>
<td>40 k</td>
<td>22.04</td>
</tr>
<tr>
<td></td>
<td>80 k</td>
<td>22.16</td>
</tr>
<tr>
<td>Vendor C</td>
<td>Low</td>
<td>23.37</td>
</tr>
<tr>
<td></td>
<td>25 k</td>
<td>22.75</td>
</tr>
<tr>
<td></td>
<td>50 k</td>
<td>22.70</td>
</tr>
<tr>
<td></td>
<td>75 k</td>
<td>22.57</td>
</tr>
<tr>
<td>Vendor D</td>
<td>Low</td>
<td>22.02</td>
</tr>
<tr>
<td></td>
<td>25 k</td>
<td>22.04</td>
</tr>
<tr>
<td></td>
<td>50 k</td>
<td>22.25</td>
</tr>
<tr>
<td></td>
<td>75 k</td>
<td>22.47</td>
</tr>
</tbody>
</table>

- Resistance values taken across a 20 ohm resistor in a package die

No increase in resistance

Slight Resistance increase
Bake and Contact Resistance (SLT)

- Does the contact resistance change after baking the socket?
- 48 hours bake at 90°C
- Repeatable for Burn-In socket evaluation
 - Higher temp
 - Longer burn-in cycles

Resistance

<table>
<thead>
<tr>
<th>0 Hrs Bake</th>
<th>48 Hrs Bake @ 90°C</th>
<th>Change in milli-ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.495</td>
<td>3.488</td>
<td>7</td>
</tr>
<tr>
<td>3.582</td>
<td>3.554</td>
<td>29</td>
</tr>
<tr>
<td>3.322</td>
<td>3.291</td>
<td>31</td>
</tr>
<tr>
<td>3.195</td>
<td>3.171</td>
<td>24</td>
</tr>
<tr>
<td>3.173</td>
<td>3.147</td>
<td>26</td>
</tr>
<tr>
<td>3.846</td>
<td>3.811</td>
<td>36</td>
</tr>
<tr>
<td>3.623</td>
<td>3.592</td>
<td>31</td>
</tr>
<tr>
<td>3.720</td>
<td>3.738</td>
<td>-18</td>
</tr>
<tr>
<td>3.185</td>
<td>3.151</td>
<td>35</td>
</tr>
<tr>
<td>2.357</td>
<td>2.334</td>
<td>23</td>
</tr>
<tr>
<td>2.065</td>
<td>2.040</td>
<td>25</td>
</tr>
<tr>
<td>3.982</td>
<td>4.031</td>
<td>-49</td>
</tr>
<tr>
<td>3.702</td>
<td>3.607</td>
<td>95</td>
</tr>
<tr>
<td>3.279</td>
<td>3.276</td>
<td>3</td>
</tr>
</tbody>
</table>
System-Level Test vs. End User Socket

<table>
<thead>
<tr>
<th>Package Pin</th>
<th>END USER</th>
<th>SLT 1</th>
<th>SLT 2</th>
<th>SLT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD ave (Ω)</td>
<td>1.823</td>
<td>2.973</td>
<td>3.046</td>
<td>3.138</td>
</tr>
<tr>
<td>VDDIO ave (Ω)</td>
<td>1.531</td>
<td>3.140</td>
<td>3.257</td>
<td>3.261</td>
</tr>
<tr>
<td>VLDT ave (Ω)</td>
<td>2.029</td>
<td>4.149</td>
<td>4.198</td>
<td>4.344</td>
</tr>
<tr>
<td>VTT ave (Ω)</td>
<td>2.624</td>
<td>2.927</td>
<td>2.989</td>
<td>3.358</td>
</tr>
<tr>
<td>VSS ave (Ω)</td>
<td>1.730</td>
<td>4.274</td>
<td>4.331</td>
<td>4.438</td>
</tr>
</tbody>
</table>

- Resistance values taken with a functional device loaded in socket.
Socket Type Comparison

- End user (OEM)
- Burn-In
- SLT
- Can we bring all socket platforms to the same contact resistance standard?

<table>
<thead>
<tr>
<th></th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>END USER</td>
<td>BURN-IN</td>
</tr>
<tr>
<td>2.1692</td>
<td>2.4028</td>
</tr>
<tr>
<td>2.1167</td>
<td>2.379</td>
</tr>
<tr>
<td>1.8015</td>
<td>2.0459</td>
</tr>
<tr>
<td>1.7888</td>
<td>2.0392</td>
</tr>
<tr>
<td>1.8163</td>
<td>2.0369</td>
</tr>
<tr>
<td>1.8638</td>
<td>2.0796</td>
</tr>
<tr>
<td>2.168</td>
<td>2.3766</td>
</tr>
<tr>
<td>1.6496</td>
<td>1.9452</td>
</tr>
<tr>
<td>1.6097</td>
<td>1.7743</td>
</tr>
<tr>
<td>1.6481</td>
<td>1.8269</td>
</tr>
<tr>
<td>1.8512</td>
<td>2.0444</td>
</tr>
<tr>
<td>1.8249</td>
<td>2.1837</td>
</tr>
<tr>
<td>2.1094</td>
<td>2.2739</td>
</tr>
<tr>
<td>2.0587</td>
<td>2.2256</td>
</tr>
<tr>
<td>1.6658</td>
<td>1.8267</td>
</tr>
<tr>
<td>1.8736</td>
<td>1.9868</td>
</tr>
<tr>
<td>1.934</td>
<td>2.0401</td>
</tr>
<tr>
<td>1.8011</td>
<td>1.9287</td>
</tr>
<tr>
<td>1.9489</td>
<td>2.0633</td>
</tr>
<tr>
<td>1.2142</td>
<td>1.2738</td>
</tr>
</tbody>
</table>
Post Assembly O/S Testing

- No need for a fully functional tester
 - Limited tester time

- Test All Device pins
 - Signal & Source

- C4 Bump continuity
- Die Attach
- Handler capability for volume testing
- Validated and correlated to a functional tester
Conclusions

• Lab environment test solutions provide flexibility and real time capability
• Testing all device pins allows us to isolate socket, board design or assembly related problems
• Socket qualification is more effective and thorough.
• Time cycle from engineering prototype to production is reduced
Conclusions Continued

• Compare socket performance across all platforms
• Build volume quantities of sockets based on the validation of a few.
• Target the ideal actuation force
 - Alleviate stress on package
• Transfer a “plug-and-play” socket from an engineering environment to the production floor
Acknowledgements

Thanks to AMD sites at Singapore, Penang and Austin (product & manufacturing engineering)

Thanks also to Paul Baldock of Checksum Inc. and all our socket suppliers.
Questions?